
Autodesk Inventor Tutorials

by Sean Dotson
www.sdotson.com
sean@sdotson.com

Advanced Motion
Part Two

Latest Revision: 5/14/02

© 2002 Sean Dotson (sdotson.com)
Inventor is a registered trademark of Autodesk Inc.

By downloading this document you agreed to the following:

Your use of this material is for information purposes only. You agree not to distribute, publish, 
transmit, modify, display or create derivative works from or exploit the contents of this document in 
any way. Any other use, including the reproduction, modification, distribution, transmission, 
republication, display, or performance, of the content on this site is strictly prohibited. 

mailto:sean@sdotson.com
http://www.sdotson.com/


This tutorial assumes that the user is familiar with basic constraints and how to drive 
those constrains.  It also assumes that they are familiar with creating and editing 
parameters.  It furthermore assumes that the reader has read the Advanced Motion Part 
One tutorial.

To see an .avi file of the final animation lesson click here.  Now that we know what we 
want to do let’s begin the lesson.

We begin with a basic assembly.  The assembly consists of the checkerboard (made from 
two parts), checkers, timer body and two different timer hands.  While not all of these 
parts are necessary for the lesson (many were added for aesthetic reasons) they are all 
provided in a zip file located here.

Figure 1 - Basic Constrained Assembly with Checkers Identified

Constrain the assembly as shown above.  To constrain the checkers use a mate to attach 
them to the board then use the checkers’ origin planes to constrain them to two sides of 
the board using flush constraints.  Since we are not moving the back row of checkers I 
used an assembly array to place them however the checkers we want to move must be 
placed and constrained individually.

The timer body is placed and grounded and the hands are constrained via an angular 
constraint to a horizontal surface.  We then rename the right hand’s angular constraint 
(via the parameters menu) to angle.

http://www.sdotson.com/tutparts/motion2.zip
http://www.sdotson.com/graphics/gallery/checkers.avi


The smaller middle hand is constrained to a horizontal surface and has the equation 

angle * 2

This step is simply aesthetic and could be skipped.

We now can begin to create the equations needed to move the checkers.  Using angle as 
our driven constraint we tie in the motion of Checker A (see Figure 1) to angle.  Find the 
flush constraint that controls the motion in the X direction.  Edit the equation to read:

0.750 in + min(( 0.100 ul * angle * 1.000 in / 1.00 deg );0.5 in)

Breaking down this equation reveals that the 0.750in value is the initial displacement of 
the checker.  (Since the squares are 0.5” square and it is in the second row 
(.5)+(0.5/2)=0.75)  We then add to this the minimum value of (0.1*angle) or 0.5in.  This 
means the checker will move until the value of angle reaches 5 deg (0.1*5=0.5)

NOTE: Be sure to keep units consistent.  Also depending on what surface off of 
which you initially constrained the checker, the initial value (0.75 in our case) may 
be different.  Furthermore the values may be negative.  If this is the case simply 
switch the signs in your equations.

Now let’s look at the motion in the Y direction.  Edit this flush constraint to read:

2.750 in + min(( 0.100 ul * angle * 1.000 in / 1.00 deg );0.5 in)

Again 2.750in is our initial displacement (I constrained the checker off the near side of 
the board) and again we are adding to that the minimum value of (0.1*angle) or 0.5in  

Now drive angle from 0 to 100 deg.  The checker should move diagonally one square in 
the positive X direction and one square in the positive Y direction.  (see Figure 2)

We can now work on moving checker B.  Again edit the flush constraint parameter to 
read:

0.750 in + min(max(( 0.100 ul * ( angle - 10 deg ) * 1.000 in / 1.00 
deg );0 in);0.5 in)

for the X direction and

0.750 in + min(max(( 0.100 ul * ( angle - 10.00 deg ) * 1.000 in / 1.00 
deg );0.000 in);0.500 in)

for the Y direction.

Here you will notice that the equations are a bit more complex.  Let’s first look at the 
equation for the X direction.  As usual we have the initial displacement of 0.750in.  We 
then have a nested min/max function.  Let’s look at the inner function first.



Figure 2 - Checker "A" Moved into Position

max(( 0.100 ul * ( angle - 10 deg ) * 1.000 in / 1.00 deg );0 in

This function returns the maximum value of either 0.1*(angle-10) or 0 in.  This means 
the return value will be 0 for angle<10 degrees since angle-10 is negative for all values 
less than 10 degrees.  So our checker will not move until angle reaches 10 degrees.

NOTE:  Since the previous checker stops moving at 5 degrees we choose the 10 
degree value in this equation to prove 5 degrees of “dwell” time.  We could have 
chosen any value for the dwell.  When creating animations such as this, a pause 
between moves makes the motion more realistic.  Your actual design will dictate the 
real dwell time.

Now we go up one level in the equation structure and examine the min function.

min(max(( 0.100 ul * ( angle - 10.00 deg ) * 1.000 in / 1.00 deg 
);0.000 in);0.500 in)

This takes the minimum value of the nested equation (which will range from 0 to 
(0.1*(angle-10)) or 0.5in.  This means that the motion of the checker will stop when 
angle becomes greater than or equal to 15 degrees.



The same logic holds true for the motion in the Y direction.  The readers are left to prove 
this to themselves.  (After reading countless engineering textbooks with this phrase I 
always wanted to use it.  Sorry, couldn’t resist. ☺)

Again drive angle to 100 degrees.  You should see the motion of the first checker 
followed by the motion of the second checker.

The technique of nesting min and max functions is the basic method to get movement of a 
part to start at a determined time and stop at another.

The motion of checkers C & D are achieved in the same manner.  Remember that the 
dwell angle must be set properly to make the movement consecutive.  Below I have listed 
the equations for checkers C & D

Checker C:
X direction:
0.750 in + min(max(( 0.100 ul * ( angle - 20.00 deg ) * 1.000 in / 1.00 

deg );0.000 in);0.500 in)
Y direction:
0.750 in + min(max(( 0.100 ul * ( angle - 20.00 deg ) * 1.000 in / 1.00 

deg );0.000 in);0.500 in)

Checker D:
X direction:
0.750 in + min(max(( 0.100 ul * ( angle - 30.00 deg ) * 1.000 in / 1.00 

deg );0.000 in);0.500 in)
Y direction:

-1.250 in - min(max(( 0.100 ul * ( angle - 30.00 deg ) * 1.000 in / 
1.00 deg );0.000 in);0.500 in)

Note that in the Y equation for checker D that the initial value is negative.  Since this is 
the case we subtract the rest of the equation from this value to get the correct motion.  
You will have to use your own judgment to determine if the value of the min/max 
equations should be added to or subtracted from the initial value.

It is also often useful to construct a graph of the desired movement before you begin.  See 
Figure 3 for an example.  For this example you would also want to construct one for the 
Y direction.

Drive angle from 0 to 100 degrees.  You should have each checker move one square in 
succession.  If you watch the AVI video however you will notice that checker A moves 
once (then the others move), then it moves once again.  For this motion we will need to 
edit the constraint equation.  Find the parameter for the X and Y directions and edit them 
to read as follows.

X direction:
0.750 in + min(( 0.100 ul * angle * 1.000 in / 1.00 deg );0.500 in) + 

sign(angle - 40.00 deg) * movetwox



Motion of Checkers (x-drection)

0
0.1
0.2
0.3
0.4
0.5
0.6

0 5 10 15 20 25 30 35

value of angle (deg)

di
st

an
ce

 m
ov

ed
 (i

n)

A
B
C
D

Figure 3 – Chart detailing the motion of checkers (X direction)

Y direction:
2.750 in + min(( 0.100 ul * angle * 1.000 in / 1.00 deg );0.500 in) -

sign(angle - 40.00 deg) * movetwoy

These are basically the same equations but with the addition (and subtraction) of the 
term(s):

sign(angle - 40.00 deg) * movetwox and

sign(angle - 40.00 deg) * movetwoy

movetwox and movetwoy are user parameters that we added in parameters dialogue box.
Got to the bottom of the parameters dialogue (where you will see user parameters) and 
click Add.

Enter the values of movetwox and movetwoy as shown below (units are in inches):

movetwox = min(max(( 0.100 ul * ( angle - 40 deg ) * 1.000 in / 1.00 
deg );0 in);0.5 in)

movetwoy = min(max(( 0.100 ul * ( angle - 40 deg ) * 1.000 in / 1.00 
deg );0 in);0.5 in)

We placed these in the user parameters area so that we did not have to type out the entire 
formula in the upper parameters box.  By breaking down the function into sub functions 
and calling their names it simplifies the process of writing the equations.  We could have 
written the full equation as:

2.750 in + min(( 0.100 ul * angle * 1.000 in / 1.00 deg );0.500 in) -
sign(angle - 40.00 deg) * min(max(( 0.100 ul * ( angle - 40 deg ) * 

1.000 in / 1.00 deg );0 in);0.5 in)



But this gets rather messy.

So what have we done?  We know that the first part of the equation moves checker A one 
square in the x and y directions but what does the 

sign(angle - 40.00 deg) * movetwox

part accomplish?  

The sign function returns a binary value depending on the value of its argument.  If the 
argument is positive it returns a 1, if negative a zero.  In this example we are using the 
sign function as a primitive if..then function.  If the value of angle-40 is positive (i.e. 
angle>40) then sign returns 1 and we then add (or subtract) the value of movetwox to the 
first part of the equation.  If it is negative (angle<40) then sign retuns 0 and we do not 
add the value of movetwox (since 0*movetwox = 0).  Similar logic follows for the Y 
direction equation.

Now let’s look at what movetwox does.  Again movetwox is:

movetwox = min(max(( 0.100 ul * ( angle - 40 deg ) * 1.000 in / 1.00 
deg );0 in);0.5 in)

movetwox returns the minimum of either 0.5in or the maximum of either (0.1*(angle-
40)) or 0in).  This nested function is similar to the one described in the movement of 
checker B.

So when angle<40 the max function returns 0 and hence the min equation returns 0 as 
well.

When 45>angle>40 the max function returns the value of (0.1*(angle-40)) and hence the 
min function returns the value of (0.1*(angle-40)).

When angle>45 the max function returns (0.1*(angle-40)) and hence the min function 
returns 0.5in

Again a chart can be helpful in planning the motion of the parts.  (see Figure 4).

Now drive angle from 0 to 100 degrees.  You should have motion similar to that as 
shown in the AVI example.

I encourage the readers to edit the equations to see get the checkers to make different 
movements.  For example make checker B’s move be in the positive Y direction instead 
of the negative Y direction.  Then try to get checker B, C or D to make another move 
(using the example of checker A’s movement).

http://www.sdotson.com/tutparts/checkers.zip


Multiple part, multiple motion can get tricky but if you lay out the equations in a good 
format before you begin you will have no problems performing very advanced motion 
simulations in Inventor.

Motion of Checkers (x-drection)

0
0.2
0.4
0.6
0.8
1

1.2

0 5 10 15 20 25 30 35 40 45 50

value of angle (deg)

di
st

an
ce

 m
ov

ed
 (i

n)

A
B
C
D

Figure 4 - Chart detailing the final motion of checkers (X direction)


	Autodesk Inventor Tutorials
	Advanced Motion
	Part Two
	Latest Revision: 5/14/02
	NOTE: Be sure to keep units consistent.  Also depending on what surface off of which you initially constrained the checker, the initial value (0.75 in our case) may be different.  Furthermore the values may be negative.  If this is the case simply switch the signs in your equations.




