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Preface

These online lecture notes (in the form of an e-book) are intended to serve as
an introduction to the finite element method (FEM) for undergraduate students or
other readers who have no previous experience with this computational method.
The notes cover the basic concepts in the FEM using the simplest mechanics
problems as examples, and lead to the discussions and applications of the 1-D bar
and beam, 2-D plane and 3-D solid elements in the analyses of structural stresses,
vibrations and dynamics. The proper usage of the FEM, as a popular numerical
tool in engineering, is emphasized throughout the notes.

This online document is based on the lecture notes developed by the author
since 1997 for the undergraduate course on the FEM in the mechanical engineering
department at the University of Cincinnati. Since this is an e-book, the author
suggests that the readers keep it that way and view it either online or offline on
his/her computer. The contents and styles of these notes will definitely change
from time to time, and therefore hard copies may become obsolete immediately
after they are printed. Readers are welcome to contact the author for any
suggestions on improving this e-book and to report any mistakes in the
presentations of the subjects or typographical errors. The ultimate goal of this e-
book on the FEM is to make it readily available for students, researchers and
engineers, worldwide, to help them learn subjects in the FEM and eventually solve
their own design and analysis problems using the FEM.

The author thanks his former undergraduate and graduate students for their
suggestions on the earlier versions of these lecture notes and for their contributions
to many of the examples used in the current version of the notes.

Yijun Liu
Cincinnati, Ohio, USA
December 2002
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Chapter 1. Introduction

|. Basic Concepts

The finite element method (FEM), or finite element analysis
(FEA), is based on the idea of building a complicated object with
simple blocks, or, dividing a complicated object into small and
manageable pieces. Application of this simple idea can be found
everywhere in everyday life, as well as in engineering.

Examples:

e Lego (kids’ play)
e Buildings

“Element” S;

) | :
Area of one triangle: S, = ERZ sinf),

. u 1 , (2« 5
Area of the circle: Sy =28, = S T = e M e = e
i=1
where N = total number of triangles (elements).
Observation: Complicated or smooth objects can be

represented by geometrically simple pieces (elements).

© 1997-2002 Yijun Liu, University of Cincinnati 1
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Why Finite Element Method?

e Design analysis: hand calculations, experiments, and
computer simulations

FEM/FEA is the most widely applied computer simulation
method in engineering

e Closely integrated with CAD/CAM applications

Applications of FEM in Engineering

e Mechanical/Aerospace/Civil/Automobile Engineering

Structure analysis (static/dynamic, linear/nonlinear)

Thermal/fluid flows
e Electromagnetics
e (Geomechanics

e Biomechanics

Modeling of gear coupling

Examples:

© 1997-2002 Yijun Liu, University of Cincinnati 2
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A Brief History of the FEM

o 1943 -—-- Courant (Variational methods)

e 1956 ----- Turner, Clough, Martin and Topp (Stiffness)
e 1960 ----- Clough (“Finite Element”, plane problems)
e 1970s ----- Applications on mainframe computers

e 1980s ----- Microcomputers, pre- and postprocessors

e 1990s ----- Analysis of large structural systems

Can Drop Test (Click for more information and an animation)

© 1997-2002 Yijun Liu, University of Cincinnati 3


http://urbana.mie.uc.edu/yliu/Showcase_FEA/Can_Drop/Can_Drop.htm

Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

FEM in Structural Analysis (The Procedure)

e Divide structure into pieces (elements with nodes)

e Describe the behavior of the physical quantities on each
element

e Connect (assemble) the elements at the nodes to form an
approximate system of equations for the whole structure

e Solve the system of equations involving unknown
quantities at the nodes (e.g., displacements)

e (Calculate desired quantities (e.g., strains and stresses) at
selected elements

Example:

Typical
element

Typical
node

FEM model for a gear tooth (From Cook’s book, p.2).

© 1997-2002 Yijun Liu, University of Cincinnati 4
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Computer Implementations

e Preprocessing (build FE model, loads and constraints)
e FEA solver (assemble and solve the system of equations)

e Postprocessing (sort and display the results)

Available Commercial FEM Software Packages

o ANSYS (General purpose, PC and workstations)

o SDRC/I-DEAS (Complete CAD/CAM/CAE package)
o NASTRAN (General purpose FEA on mainframes)

o ABAQUS (Nonlinear and dynamic analyses)

o COSMOS (General purpose FEA)

e ALGOR (PC and workstations)

o PATRAN (Pre/Post Processor)

o HyperMesh (Pre/Post Processor)

e Dyna-3D (Crash/impact analysis)

A Link to CAE Software and Companies

© 1997-2002 Yijun Liu, University of Cincinnati 5
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Objectives of This FEM Course

e Understand the fundamental ideas of the FEM

e Know the behavior and usage of each type of elements
covered in this course

e Be able to prepare a suitable FE model for given problems

e Can interpret and evaluate the quality of the results (know
the physics of the problems)

e Be aware of the limitations of the FEM (don’t misuse the
FEM - a numerical tool)

FEA of an Unloader Trolley (Click for more info)
By Jeff Badertscher (ME Class of 2001, UC)

See more examples in:

Showcase: Finite Element Analysis in Actions
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ll. Review of Matrix Algebra

Linear System of Algebraic Equations
a,x, +a,x,+..+a, x, =b,

a, X, +a,x,+..+a, x, =Db,

(1)
a,x, +a ,x,+.+a x =b
where xi, x,, ..., x, are the unknowns.
In matrix form:
Ax=b (2)
where
all alZ aln
a, a a
21 22 2
A= [ai. = "
y
la, a, .. a,/|
e A fb 3 (3)
'xl 1
X b
2 2
x={xl}:4 > bz{bl}:< >
. nJ . nJ

A is called a nxn (square) matrix, and x and b are (column)
vectors of dimension .

© 1997-2002 Yijun Liu, University of Cincinnati 7
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Row and Column Vectors

Matrix Addition and Subftraction

For two matrices A and B, both of the same size (m xn), the
addition and subtraction are defined by

C=A+B with cy.za,.j+bl.j
D=A-B with dl.jzal.j—b,.j

Scalar Multiplication
)A = |ha, |

Matrix Multiplication

For two matrices A (of size /xm) and B (of size m xn), the
product of AB is defined by

C=AB with C; = Zaikbkj
k=1

wherei=1,2,...[ j=1,2, ..., n.

Note that, in general, AB # BA, but (AB)C = A(BC)
(associative).

© 1997-2002 Yijun Liu, University of Cincinnati 8
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Transpose of a Matrix
If A = [a;], then the transpose of A 1s

AT = [a jl.]
Notice that (AB)' =B'A".
Symmetric Matrix

A square (n>n) matrix A is called symmetric, if

—_— T —_—
A=A or a, =a,

Unit (Identity) Matrix

1 0 .. 0
0 1 .. 0
I=
0 0 .. 1]

Note that Al = A, Ix =x.

Determinant of a Matrix

The determinant of square matrix A is a scalar number
denoted by det A or |A|. For 2x2 and 3 X3 matrices, their

determinants are given by

a b
de‘{ } =ad —bc
d

C

and

© 1997-2002 Yijun Liu, University of Cincinnati
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det a21 a22 a23 = a11a22a33 + a12a23a31 + a21a32a13

—d;3A,,05 — A4, Ay — Ayyds, Ay

Singular Matrix

A square matrix A is singular if det A = 0, which indicates
problems in the systems (nonunique solutions, degeneracy, etc.)

Matrix Inversion

For a square and nonsingular matrix A (det A #0), its
inverse A" is constructed in such a way that

AAT =ATA=1
The cofactor matrix C of matrix A is defined by

Czj = (_1)i+j M’j

where Mj; 1s the determinant of the smaller matrix obtained by
eliminating the ith row and jth column of A.

Thus, the inverse of A can be determined by

1
det A

We can show that (AB)"' = B'A™".

A = C’

© 1997-2002 Yijun Liu, University of Cincinnati 10
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Examples:
o | b]" 1 d -b
¢ d| (ad-bc)|-c a
Checking,
a b]'fa b 1 [d -bJa b] [1 0
¢c d| |¢c d| (ad-bc)|—c¢ a |c d| |0 1
1 -1 07" 1 3 2 11" [3 2 1]
2) |-1 2 -1| = 2 2 1| ={2 2 1
(4-2-1)
0 -1 2 11 1] |11 1]
Checking,
1 -1 073 2 1] [1 0 0]
-1 2 -12 2 1|=|/0 1 0
0 -1 2|1 1 1] [0 0 1]

If det A =0 (i.e., A is singular), then A" does not exist!

The solution of the linear system of equations (Eq.(1)) can be
expressed as (assuming the coefficient matrix A is nonsingular)

x=A"b

Thus, the main task in solving a linear system of equations is to
found the inverse of the coefficient matrix.

© 1997-2002 Yijun Liu, University of Cincinnati 11
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Solution Techniques for Linear Systems of Equations

e Gauss elimination methods

e [terative methods

Positive Definite Matrix

A square (n>n) matrix A is said to be positive definite, if for
all nonzero vector x of dimension #,

x ' Ax >0

Note that positive definite matrices are nonsingular.

Differentiation and Integration of a Matrix
Let

A(t)=a,(1)]
then the differentiation is defined by

da,(t)
i

d

—A(t) =

AW {
and the integration by

j A(t)dt = [ J' a, (t)dt}

© 1997-2002 Yijun Liu, University of Cincinnati 12
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Types of Finite Elements

1-D (Line) Element

.——

(Spring, truss, beam, pipe, etc.)

2-D (Plane) Element

(Membrane, plate, shell, etc.)

3-D (Solid) Element

(3-D fields - temperature, displacement, stress, flow velocity)

© 1997-2002 Yijun Liu, University of Cincinnati 13
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lll. Spring Element
“2 aé. ‘mbontant o & 55,”

One Spring Element

X .

1 J
AW
fi k uj

Two nodes: 1]
Nodal displacements: u;, u; (in, m, mm)
Nodal forces: f» f; (Ib, Newton)

Spring constant (stiffness): & (Ib/in, N/m, N/mm)

Spring force-displacement relationship:

F=FkA with A=u, —u,
Linear
F Nonlinear
k
A

k=F/A (>0)is the force needed to produce a unit stretch.

© 1997-2002 Yijun Liu, University of Cincinnati 14
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We only consider linear problems in this introductory
course.

Consider the equilibrium of forces for the spring. At node 1,
we have

fi=—F=—k(u,—u,)=ku, — ku,

and at node j,
f,=F=k(u,—u,)=—ku, +ku,

In matrix form,

W HEH

or,

where
k = (element) stiffness matrix
u = (element nodal) displacement vector
f = (element nodal) force vector

Note that k is symmetric. Is k singular or nonsingular? That is,
can we solve the equation? If not, why?

© 1997-2002 Yijun Liu, University of Cincinnati 15
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Spring System
X
k; k;
— - NWWW-—VWW——
1 2 3

For element 1,

kl _kl u.| f11
{_lﬂ k, }{”z}_ f

element 2,

o kz kz Uy f 22
where f"1s the (internal) force acting on /ocal node i of element
m(i=1,2).

Assemble the stiffness matrix for the whole system:

Consider the equilibrium of forces at node 1,

F=f
at node 2,

F,=f,+ 17
and node 3,

F=f

© 1997-2002 Yijun Liu, University of Cincinnati 16
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That is,
F = ku, —ku,
F, =—ku, +(k, + k,)u, — k,u,
F, =—k,u, + k,u,
In matrix form,
k, -k, 0 |(u
—k, k+k, -k,
0 -k, k, ||u,

=
I
wﬁj Nﬁj »—ﬁj

or
KU=F

K is the stiffness matrix (structure matrix) for the spring system.

An alternative way of assembling the whole stiffness matrix:

“Enlarging” the stiffness matrices for elements 1 and 2, we
have

= - e

kl _kl 0 U, fll\

© 1997-2002 Yijun Liu, University of Cincinnati 17
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Adding the two matrix equations (superposition), we have

r

"

N

kl _kl 0 ] U fll
—k, k+k, —k, Ru, =21+ 17
| 0 _kz kz BGE f22

J

This 1s the same equation we derived by using the force
equilibrium concept.

Boundary and load conditions:

Assuming, u,=0 and F,=F, =P
we have
[k, —k, 0 ][0 F
—k, k+k, -k, Ru,p=1P
| 0 -k, k, |\u, P

which reduces to

k +k,
_k2

ol

E - _kluz

and

Unknowns are

U= {uz} and the reaction force F; (if desired).
u

3

© 1997-2002 Yijun Liu, University of Cincinnati 18
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Solving the equations, we obtain the displacements

u, | 2P/ k,
u,|  |2P/k,+P/k,

and the reaction force

F, =-2P

Checking the Results

e Deformed shape of the structure
e Balance of the external forces

e Order of magnitudes of the numbers

Notes About the Spring Elements

e Suitable for stiffness analysis
e Not suitable for stress analysis of the spring itself

e Can have spring elements with stiffness in the lateral
direction, spring elements for torsion, etc.

© 1997-2002 Yijun Liu, University of Cincinnati 19
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Example 1.1
k; ky P ks
AN —
1 2 3 4

Given:  For the spring system shown above,

k, =100 N/mm, k, =200 N/mm, k,=100N/mm
P=500N, u,=u,=0
Find: (a) the global stiffness matrix
(b) displacements of nodes 2 and 3
(c) the reaction forces at nodes 1 and 4
(d) the force in the spring 2
Solution:

(a) The element stiffness matrices are

100 —100 (N/am) o
= mm
' |-100 100
. [ 200 —200 (N/mm) 2
>T12200 200 |
. [ 100 —100 (N/mm) 3)
= mm
P =100 100

© 1997-2002 Yijun Liu, University of Cincinnati 20
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Chapter 1. Introduction

Applying the superposition concept, we obtain the global stiffness
matrix for the spring system as

u, u, u, u,
100 —100 0 0
(| 7100 1004200 200 0
0  —200 2004100 —100
0 0 ~100 100
or
C100 —100 0 0
| 7100 300 -200 0
0 —200 300 —100
0 0 -100 100

which is symmetric and banded.

Equilibrium (FE) equation for the whole system is

[ 100
—100
0
0

—100 0
300 -200
—-200 300
0 —100

0 |y
0 |lu,
100 || u,
100 ||u,

b= 4

N O :11\

S

¥ (4)

(b) Applying the BC (u, = u, = 0) in Eq(4), or deleting the 1% and
4™ rows and columns, we have

© 1997-2002 Yijun Liu, University of Cincinnati
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300 —2007(u,] (0O
{ 200 300 H }:{ } ()
- u, P

Solving Eq.(5), we obtain
u, P /250 2
= =9, (mm) (6)
u, 3P/500 3

(c) From the 1* and 4™ equations in (4), we get the reaction forces
F = —100u, = 200 (N)
F, = —100u, = -300 (N)

(d) The FE equation for spring (element) 2 is

200 =200 |fu | f,
~200 200 ||u, | |f,
Here i = 2, j = 3 for element 2. Thus we can calculate the spring
force as

u
F=f =-f =[-200 200]{;}

3

=[-200 200]{?}

=200 (N)

Check the results!

© 1997-2002 Yijun Liu, University of Cincinnati 22
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Example 1.2

Problem: For the spring system with arbitrarily numbered nodes
and elements, as shown above, find the global stiffness
matrix.

Solution:

First we construct the following

Element Connectivity Table

Element Nodei (1) | Nodej (2)
1 4 2
2 2 3
3 3 5
4 2 1

which specifies the global node numbers corresponding to the
local node numbers for each element.

© 1997-2002 Yijun Liu, University of Cincinnati 23
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Then we can write the element stiffness matrices as follows

u, U, U, u,
klz{kl _k1:| k2=|:k2 _k2:|
_kl kl _kz kz
u, U, u, u,
k3=|: k3 _k3:| k4=|: k4 _k4:|
—k, K —k, k,

Finally, applying the superposition method, we obtain the global
stiffness matrix as follows

u, u, U, u, U
[k, —k, 0 0 0 |
-k, k+k,+k, -k, -k O

K=| 0 —k, k,+k, 0 -k,

0 —k, 0 | 0
0 0 —k, 0 k|

The matrix 1s symmetric, banded, but singular.

© 1997-2002 Yijun Liu, University of Cincinnati 24
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Chapter 2. Bar and Beam Elements

l. Linear Static Analysis

Most structural analysis problems can be treated as linear
static problems, based on the following assumptions

1. Small deformations (loading pattern is not changed due
to the deformed shape)

2. Elastic materials (no plasticity or failures)

3. Static loads (the load is applied to the structure in a slow
or steady fashion)

Linear analysis can provide most of the information about
the behavior of a structure, and can be a good approximation for

many analyses. It is also the bases of nonlinear analysis in most
of the cases.

© 1997-2002 Yijun Liu, University of Cincinnati 25
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Il. Bar Element

Consider a uniform prismatic bar:

U U

T ar i )
- L >
L length
A cross-sectional area
E elastic modulus
u=u(x) displacement
e =¢e(x) strain
c =o(x) stress

Strain-displacement relation:

& =— (1)
dx
Stress-strain relation:

c = E¢ (2)

© 1997-2002 Yijun Liu, University of Cincinnati 26
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Stiffness Matrix --- Direct Method

Assuming that the displacement u is varying linearly along
the axis of the bar, 1.e.,

X
u(x 1——)u+ u, 3
)=(1- )+ 3
we have
oW _ A (A = elongation) (4)
€= = — = elongation
L L 5
EA
oc=Fe=—- 5
7 (5)

G = g (F = force in bar) (6)
Thus, (5) and (6) lead to
F= E—LA A = kA (7)

where k = E—LA 1s the stiffness of the bar.

The bar is acting like a spring 1n this case and we conclude
that element stiffness matrix is

© 1997-2002 Yijun Liu, University of Cincinnati 27
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E4 _E4
= k —k: I I
—k k _EA  EA
l L ]
or
EA| 1 -1
k=— 8
2. ®

This can be verified by considering the equilibrium of the forces
at the two nodes.

Element equilibrium equation 1s
EA 1 —1 Mi fz
= - ©)
L|-1 1]y, /i

Degree of Freedom (dof)

Number of components of the displacement vector at a
node.

For 1-D bar element: one dof at each node.

Physical Meaning of the Coefficients in k

The jth column of k (here j = 1 or 2) represents the forces
applied to the bar to maintain a deformed shape with unit
displacement at node j and zero displacement at the other node.

© 1997-2002 Yijun Liu, University of Cincinnati 28
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Stiffness Matrix --- A Formal Approach

We derive the same stiffness matrix for the bar using a
formal approach which can be applied to many other more
complicated situations.

Define two linear shape functions as follows

N, (&) =1-¢, N,(€)=¢ (10)
where
_*
Q—L, 0<E<1 (11)

From (3) we can write the displacement as

u(x) =u(§)=N,(E)u, + N,(E)u,

or
ui
u=[N, Nj]{ }:Nu (12)
U,
Strain is given by (1) and (12) as
8=@=[1N}u:Bu (13)
dx |dx

where B is the element strain-displacement matrix, which is
d _d dg,
B=[NGE) V@)= E[N" © N,@]e >

ie,  B=[-1/L 1/L] (14)

© 1997-2002 Yijun Liu, University of Cincinnati 29
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Stress can be written as
c = ke = EBu
Consider the strain energy stored in the bar

U = %jo TedV = %j(uTBTEBu)dV

14 V

_ ;u[ | (BTEB)dV]u

V

where (13) and (15) have been used.
The work done by the two nodal forces is

1 1 I -
W=—fu+—fu =—uf

For conservative system, we state that
U=w
which gives

;u{ | (BTE];)ﬂu _ %qu

V

We can conclude that

[ j (BTEB)dV]u ~f

v

(15)

(16)

(17)

(18)
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or

ku=f (19)
where

k = j (B"EB)V (20)

is the element stiffness matrix.

Expression (20) 1s a general result which can be used for
the construction of other types of elements. This expression can
also be derived using other more rigorous approaches, such as
the Principle of Minimum Potential Energy, or the Galerkin’s
Method.

Now, we evaluate (20) for the bar element by using (14)

L
1L 11
k= E[-1/L 1/L]ddv="4
/L Ll-1 1

0

which is the same as we derived using the direct method.

Note that from (16) and (20), the strain energy in the
element can be written as

U=—u'ku (21)
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Example 2.1
DO24E @ AE
? — 9%
1 21 P 3 X
L L

Problem: Find the stresses in the two bar assembly which is
loaded with force P, and constrained at the two ends,
as shown in the figure.

Solution: Use two 1-D bar elements.

Element 1,
U, u,
kl:%{—ll _11}
Element 2,
U, U,

EA| 1 -1
k,=—
L|-1 1
Imagine a frictionless pin at node 2, which connects the two
elements. We can assemble the global FE equation as follows,
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2 -2 0]
Bl 5y 3
L

0 -1 1

Load and boundary conditions (BC) are,

u, =u, =0,

FE equation becomes,

(2 -2 0]
EAl 5 3
L

0 -1 1

U, F
U, r = Fz
U, F,

F,=P

0] (A
u, r =4 P
0] |

Deleting the 1*' row and column, and the 3™ row and column, we

obtain,
EA
A3} - (P)
Thus,
Lo PL
> 3EA
and
u, 0
u _ L 1
| 3E4
U, 0

Stress in element 1 1s
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u
6, =Fe, =EBu =E[-1/L l/L]{ 1}
u,

u, —u, E(PL —O) P
3EA

R e B Wl _
L L 34

Similarly, stress in element 2 is

U,
6,=FEe,=EB,u,=E[-1/L 1/L] .

3

3E4) 34

:Eu3—u2:£(0_ PL) P
L L

which indicates that bar 2 is in compression.

Check the results!

Notes:

e In this case, the calculated stresses in elements 1 and 2
are exact within the linear theory for 1-D bar structures.
It will not help if we further divide element 1 or 2 into
smaller finite elements.

e For tapered bars, averaged values of the cross-sectional
areas should be used for the elements.

e We need to find the displacements first in order to find

the stresses, since we are using the displacement based
FEM.
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Example 2.2
A
© i O m
* ® >—_f >
1 2| P 3 X
L L

Problem: Determine the support reaction forces at the two ends
of the bar shown above, given the following,

P=60x10"N, E=20x10"N/mm?,
A=250mm’, L=150mm, A=1.2 mm

Solution:

We first check to see if or not the contact of the bar with
the wall on the right will occur. To do this, we imagine the wall
on the right is removed and calculate the displacement at the
right end,

4
A, = PL_ (60x 104)(150) =18mm> A =12mm
EA (20x10")(250)

Thus, contact occurs.

The global FE equation is found to be,
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1 -1 071w [(F
Bl lul=lE
L

0 -1 1 ||lu) |F

The load and boundary conditions are,

F,=P=60x10'N

u, =0, u, =A=12mm

FE equation becomes,

1 -1 07(0) (F

L B S R
L

0 -1 1||A] |F

The 2™ equation gives,
EA u
AN
that 1s,
EA EA

Solving this, we obtain
U, = l(E—I—A) = 1.5mm
2\EA

and
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u, 0
u, p =+ 15>(mm)
U, 1.2

To calculate the support reaction forces, we apply the 1%
and 3™ equations in the global FE equation.

The 1% equation gives,

u,

EA EA
F=—[1 -1 O0ju,=—(-u,)=-50x10*N
L L
Z/l3
and the 3" equation gives,
EA 3 EA
F'3 :T[O -1 1] u, >=T(—M2 +I/l3)
u, |
=-1.0x10* N
Check the results.!
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Distributed Load
q
¢ ¢
1 4>x ]
qL/2 gL/2
—e —
1
J

Uniformly distributed axial load ¢ (N/mm, N/m, 1b/in) can
be converted to two equivalent nodal forces of magnitude gL/2.
We verify this by considering the work done by the load g,

L 1

j j ueg(Lde) = [uede

0

L | U

=V Nj@)]{uj}da
L u

-4 f-e el |

2 2 ]|y

: qL/?2
u, u]
- 7AlqL/?2

DO | —

DO | —
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that is,

Thus, from the U=W concept for the element, we have

1 1 1

—u'ku=—u'f+-u'f (23)
2 2 2 1

which yields
ku="f+f (24)

The new nodal force vector is

+qL/2
f+f = Jitd (25)
TS, +qL/2

In an assembly of bars,

—» J — i—
) ) ®
1 2 3
qlL/2 qL qL/2
—q — »—>
1 2 3
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Bar Elements in 2-D and 3-D Space
2-D Case

- X
Local Global
X,y XY
Ml ) V;- U, v,
1 dof at a node 2 dof’s at a node

Note: Lateral displacement v; does not contribute to the stretch
of the bar, within the linear theory.

Transformation

l

' u.
u, =u, cosB + v, sin® =/ m]{ ’}
v,

' u.
v, =—u,sin® +v, cos® =[-m l]{ ’}
v,

1

where [ = cosO, m =sin0.
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In matrix form,
w| | 1 ml[y
v |-m 1]y

u, = Tu,

or,

where the transformation matrix

- {l m}
T =
-m |

is orthogonal, thatis, T~ =T".

For the two nodes of the bar element, we have

rul.ﬂ om0 O_Kul-\
v, -m I 0 0|
b= J L
u, 0O O [ m u,
\V;J 0 0 -m I]||v,
or,
. , T 0
u =Tu with T = N
0 T

The nodal forces are transformed in the same way,

f =Tf

(26)

(27)

(28)

(29)

(30)
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Stiffness Matrix in the 2-D Space

In the local coordinate system, we have

pRE M

Augmenting this equation, we write

— 1 O _1 O— fu;\ (f;.'\
EA| 0 0 0 O0}|v 0
S—— g =< b
Li-1 0 1 0]y, f
00 0 Of{v,] (0]
or,
ku =f

Using transformations given in (29) and (30), we obtain
k Tu=Tf

Multiplying both sides by T' and noticing that T'T =1, we
obtain

T’k Tu = f 31)

Thus, the element stiffness matrix k in the global coordinate
system is

k=T'k'T (32)

which is a 4x4 symmetric matrix.
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Explicit form,

i i J J
P m -1 —Im]|
EA| Im m* —Im —-m’ (33)

L|-0I) —-Im I Im

—Im -m* Im m

Calculation of the directional cosines [ and m:

X -X . Y-Y
[ =cosb =—L——, m = sinf = - (34)
L L

The structure stiffness matrix is assembled by using the element
stiffness matrices in the usual way as in the 1-D case.

Element Stress

ui
U { 1 1}1 m 0 0]
oc=Fs=FEB =FE —-—— — >
u, L LJ0 0 [ m]|lu,
Vi)
That is,
rui\
E Vv,
c=—|-1 —-m I m]< > (35)
L u,
\vj)
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Example 2.3

A simple plane truss is made
of two identical bars (with E, 4, and
L), and loaded as shown in the
figure. Find

1) displacement of node 2;
2) stress in each bar.

Solution:

This simple structure 1s used
here to demonstrate the assembly
and solution process using the bar element in 2-D space.

In local coordinate systems, we have

. 1 -1 ,
kl - E—A - kz
L|-1 1
These two matrices cannot be assembled together, because they

are in different coordinate systems. We need to convert them to
global coordinate system OXY.

Elemen